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ABSTRACT 

The zebrafish has become a commonly used vertebrate model for toxicity assessment, 

of particular relevance to the study of toxic effects on the visual system because of the 

structural similarities shared by zebrafish and human retinae. In this article we present a 

colour preference-based technique that, by assessing the functionality of photoreceptors, can 

be used to evaluate the effects of toxicity on behaviour. A digital camera was used to record 

the locomotor behaviour of individual zebrafish swimming in a water tank consisting of two 

compartments separated by an opaque perforated wall through which the fish could pass. The 

colour of the lighting in each compartment could be altered independently (producing distinct 

but connected environments of white, red or blue) to allow association of the zebrafish’s 

swimming behaviour with its colour preference. The functionality of the photoreceptors was 

evaluated based on the ability of the zebrafish to sense the different colours and to swim 

between the compartments. The zebrafish tracking was carried out using our algorithm 

developed with MATLAB. We found that zebrafish preferred blue illumination to white, and 

white illumination to red. Acute treatment with acrylamide (2mM for 36 hours) resulted in a 

marked reduction in locomotion and a concomitant loss of colour-preferential swimming 

behaviour. Histopathological examination of acrylamide-treated zebrafish eyes showed that 

acrylamide exposure had caused retinal damage. The colour preference tracking technique   
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has applications in the assessment of neurodegenerative disorders, as a method for preclinical 

appraisal of drug efficacy and for behavioural evaluation of toxicity. 

 

KEY WORDS Zebrafish; vision; colour preference; photoreceptors; acrylamide; toxicity 

 

 

 

1. Introduction 

The zebrafish has become a popular animal model in the field of neuroscience and 

developmental biology (Kabashi et al., 2011; Newman et al., 2011). Recent developments in 

transgenic technology and reverse genetic approaches have resulted in the zebrafish 

becoming one of the animal models most commonly used to study human health and 

dysfunction, including neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s 

disease and, in particular, retinal disorders (Fadool & Dowling, 2008). Various transgenic and 

mutant zebrafish strains mimicking human disease conditions have helped to elucidate the 

function and mechanisms of many proteins, while a variety of chemicals have been used to 

help understand the pathology of particular diseases and to develop strategies for therapy. 

Visual behavioural techniques such as optokinetic response (OKR) and optomotor response 

(OMR) have been useful in studying defects in motion perception, visual processing, light 

sensing and, to some extent, colour vision; these techniques are currently used in screening 

genetically modified animals and assessing their visual performance after genetic and 

pharmacological modifications. These methods are used mainly with larval fish in the 

assessment of visual performance based on motion cues, but since most human ocular 

disorders have a late onset there is a need for visual behavioural tests that can be used to 

study adult fish (Fleisch & Neuhauss, 2006). Studies carried out in recent years have 
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introduced assays of zebrafish learning and behaviour that have been used in testing the 

neurotoxicity of drugs (Avdesh et al., 2012; Bault et al. 2015; Emran et al., 2008; Li et al., 

2014; Parng et al., 2007; Schloss, 2015). Natural colour preference is a major factor by which 

learning, memory, decision-making and functionality of the zebrafish visual system can be 

assayed.  

       The zebrafish retina is tetrachromatic, containing (in addition to the rod photoreceptor) 

four different types of cone cells capable of processing four regions of the colour spectrum, 

namely red, green, blue and ultraviolet (Raghupathy et al., 2013). Due to the complex 

functionality of its photoreceptors, determining the specific functionality of individual 

zebrafish cone photoreceptor types using conventional molecular techniques is a difficult and 

laborious process. Behavioural techniques therefore offer an alternative means of assessing 

retinal functionality. Zebrafish behaviour is influenced by different levels of ambient 

illumination and colour. Avdesh et al. (2012) used two procedures (place preference and T-

maze) to test the preference of zebrafish for four different colours: red, yellow, green and 

blue. In the place preference procedure the fish demonstrated an equal preference for red, 

yellow and green, and less preference for blue; in the T-maze procedure blue was again the 

least preferred colour, although with this technique the fish showed an equal preference for 

red and green over yellow. 

       In the present study, we have investigated the colour preference of zebrafish for white 

(mix of wavelengths), red and blue colours. We found AB strain adult zebrafish preferred 

blue colour to white and red and preferred white to red. We also assessed the effect of 

treatment with acrylamide on zebrafish colour preference behaviour. Individual fish were 

tracked in a tank using an algorithm developed with MATLAB, modified from the algorithm 

initially proposed by Pérez-Escudero et al. (2014). The functionality of different types of 

photoreceptors was evaluated based on the zebrafish ability to sense different colours and to 
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demonstrate colour preferences by swimming between the compartments of the tank from 

one area of coloured illumination to another. This methodology based on monitoring of 

locomotor behaviour enables analysis of the functionality of the photoreceptors of living 

zebrafish and, no less importantly, provides a platform for toxicity assessment and preclinical 

drug development. 

 

2. Materials and methods 

2.1. Ethics 

Animal work was carried out in compliance with the Animal Ethics and Welfare Committee, 

Department of Life Sciences, Glasgow Caledonian University, and UK Home Office under 

Project Licence PPL 60/4169. 

 

2.2. Zebrafish housing 

AB strain adult zebrafish were housed in 2.5 litre tanks with a maximum of 12 fish (a mixture 

of male and female) in each tank. Fish were maintained in 27.5 – 28.0 °C water on a 14:10 

hours light-dark cycle.  The pH of the system water was maintained at ~7.5 and the 

conductivity was maintained between 300 – 330 µS cm
-1

. All the fish used in this study were 

between 7 and 9 months of age. Fish were fed twice daily with live shrimp and once daily 

with granular dry food (ZM systems, UK).  

 

2.3. Acrylamide treatment 

A pilot study was carried out to determine the effects of acrylamide exposure on adult 

zebrafish (8 month old) that were treated with acrylamide (Sigma Aldrich, UK) at 1mM, 

2mM, 3mM and 4mM concentration in system water for 72 hours. It was found that, when 

treated with 1mM acrylamide, all fish survived for 72 hours; when treated with 2mM 
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acrylamide fish death occurred after 48 hours; and when treated with 3 or 4 mM acrylamide, 

fish death occurred after 24 hours. As a result, it was decided that the behavioural study 

would use 36 hours exposure to 2mM acrylamide. 

      Twelve 8-month old male zebrafish (weight 0.36±0.0038g (average ± standard error) and 

body size 3.13±0.034cm (average ± standard error)) were transferred to a tank with system 

water in which acrylamide was dissolved to 2mM concentration; the control group consisted 

of eighteen 8-month old zebrafish (weight 0.36±0.0038g (average ± standard error) and body 

size 3.13±0.034cm (average ± standard error)) in a tank containing only zebrafish system 

water. Control and acrylamide-treated zebrafish were siblings. In the treatment group, 

exposure to acrylamide was terminated after 36 hours by transferring the fish to acrylamide-

free system water and stayed for 15 minutes; similarly zebrafish of the control group were 

also transferred into a tank with acrylamide-free system water and stayed for 15 minutes. The 

fish then underwent the behavioural study. During the treatment the fish were kept in 27.5 – 

28.0 °C water on a 14:10 hours light-dark cycle. During the behavioural tests, zebrafish were 

not fed. After the tests the fish were killed by immersing in 0.4% MS222 (Sigma Aldrich, 

UK). The eyes were enucleated and rinsed in 1XPBS briefly. For histology the tissue was 

fixed in 4% PFA for 2 hours at room temperature or overnight at 4ºC. 

 

2.4. Experimental setup 

The experiments were carried out in a water tank made of transparent acrylic plastic sheeting 

with a thickness of 3 mm. The dimensions of the tank were 230 x 150 x 150 mm. It was 

divided into two connected compartments of equal size (115 x 150 x 150 mm), separated 

along the midline by an opaque wall perforated by five circular openings of diameter 3cm, 

one situated near each corner of the dividing wall and one situated centrally (Fig. 1). Water 

temperature was set at 27°C. 
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     The tank was illuminated from below by a LED panel emitting a white light and driven by 

an adjustable DC power supply (CSI5003XE, Circuit Specialists, UK); the brightness was 

controlled by the current of the power supply. The ambient colour of each compartment of 

the tank was changed by placing a red or blue acrylic sheet between the LED panel light and 

the underside of each compartment. Only light of a specific wavelength could pass through 

the sheets. Absorption spectra of the red and blue acrylic sheets were measured using a 

Lambda 25 UV/Vis spectrophotometer (PerkinElmer, USA). The blue filter produced a blue 

ambient illumination (peak wavelength 450nm) that allowed assessment of the functionality 

of the blue cones of the zebrafish; the red filter absorbed all wavelengths below 580nM and 

so produced a red ambient illumination that allowed assessment of red cone functionality. In 

those trials in which one of the compartments was red or blue, a neutral density sheet was 

placed on the underside of the white compartment in order to maintain equivalence of 

brightness in the two compartments. The brightness of each compartment was measured by a 

light meter (DT-1308, CEM, UK); in each test the brightness of the two compartments varied 

by less than 5%. The barrier positioned across the middle of the tank allowed the zebrafish to 

see the colour of the other compartment through the perforations while requiring the fish to 

make a deliberate choice to travel from one compartment to the other. A shade was used to 

black out the LED panel exterior to the tank, thus ensuring that the light came only from the 

bottom of each compartment of the tank (Fig. 1). There was no additional illumination in the 

room; the computer was controlled remotely to avoid illumination from the monitor. A digital 

camera (Logitech HD Pro C920) operating in a full HD 1080p resolution (1920 x 1080 

pixels) and at a frame rate of 30 frames / sec was set above the tank to capture the locomotion 

of the individual zebrafish.  

     The zebrafish was placed in the test environment for 15 mins prior to the video recording, 

thus giving the fish time to become familiar with the conditions. Each zebrafish was placed 
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into each of the two compartments on one occasion only. A single test lasted for 1000 

seconds. In each condition (different colour filter pair combinations) 8 zebrafish were tested. 

Three replicates were conducted and all the tested zebrafish were siblings from one batch. 

 

2.5. Algorithm for zebrafish tracking 

The functionality of the photoreceptors was evaluated based on the zebrafish ability to sense 

the different colours and to demonstrate preferential behaviour by spending different amounts 

of time in each coloured compartment. The fish tracking was carried out using our own 

developed MATLAB code following the algorithm of idTracker (Pérez-Escudero, 2014). 

Each captured video file of the zebrafish swimming behaviour was decoded into a sequence 

of images. For each frame of the video, a region of interest (ROI) mask was used to isolate, 

from the rest of the tank, the area currently occupied by the fish; this results in the acquisition 

of a subimage (the fish against its immediate background) and helps to reduce image 

processing time. In the subimage, there was an obvious difference in contrast between the 

zebrafish and its background. A histogram of light distribution within the subimage was 

generated. In the histogram, there were two distinct groups of light intensity: one for the 

zebrafish and one for the background. A threshold was determined from the mean of the two 

brightness distributions, this threshold value allowing differentiation of the zebrafish from the 

background. A binary image using the threshold was calculated from the subimage. An object 

detection algorithm was then applied to the binary image. By comparing the fish length, area, 

and other features with any other objects detected from the binary image, the zebrafish could 

be distinguished from other objects. Once the zebrafish was identified from the background 

its features (such as centroid, body orientation, centreline and tail-tip position) could be 

determined using our feature extraction algorithm and its positions in the video digitized. Fig. 

2 shows the application of the tracking algorithm to a captured video that recorded the 
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movement of a zebrafish between red and blue compartments. Fig. 2a shows the zebrafish in 

a consecutive sequence of frames. The zebrafish is imaged in each of the small squares and 

can be seen moving from the red compartment to the blue compartment. At the beginning 

(top left box), the fish is swimming in the “red” compartment but with time it travels through 

a hole in the perforated wall to the “blue” compartment. After a short period in the blue 

compartment, it returns to the perforated wall (in the frames around the middle of Fig. 2a, 

part of the red compartment can be seen to the right of the fish). However, instead of passing 

through to the red compartment the fish instead turns back and remains in the blue 

compartment. Figure 2b shows the trajectory of the zebrafish. The red and blue dots denote 

the zebrafish’s locations in the red and blue compartments, respectively. Using this 

information, four indices ((a-d) listed below) could be calculated to describe zebrafish 

activity. (a) Mean velocity: the average swimming speed across both compartments (in trials 

involving uniform illumination) or in each individual compartment (in colour preference 

trials); (b) Velocity Distribution (VD): the distribution of a zebrafish’s transient swimming 

speed in one or both compartments. Given that a fish may swim or rest, depending on the 

environmental condition, a simple average may not adequately represent its pattern of 

swimming behaviour and hence velocity distribution provides a more comprehensive 

description of changes in swimming speed; (c) Compartment Occupied Ratio (COR): the 

time ratio a zebrafish stays in one compartment relative to the other. This is a particularly 

important index. A zebrafish is likely to stay in the compartment illuminated with the colour 

it prefers, or leave the compartment illuminated with the colour it dislikes. An alteration in 

the zebrafish’s vision may change its colour preference and hence its behaviour; (d) Through 

Holes Count per Thousand Seconds (TH): the average number of times a zebrafish passes 

through the holes in the perforated wall during each trial period. The higher the value of TH, 
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the more times the fish moves between compartments. If the zebrafish is active, it is likely to 

travel between the two compartments more frequently. 

 

2.6 Histology and immunohistochemistry 

For Haematoxylin and Eosin staining the fixed eyes were dehydrated in a series of alcohol 

concentrations, embedded in paraffin and sectioned in a microtome at 7 µm thickness. 

Sections were rehydrated and stained in Haematoxylin and Eosin solutions and pictured using 

an Olympus camera. For immunostaining, fixed eyes were cryo-protected in 20% sucrose, 

embedded in Cryomatrix medium (VWR, UK) and quickly frozen using dry ice. 10μm 

sections were cut in a cryomount at -20⁰C, then mounted on superfrost slides and air dried at 

room temperature for at least 30 minutes prior to storage at -80⁰C. Slides were thawed at 

room temperature for 20 minutes and washed three times in phosphate buffered saline (PBS). 

Then the sections were blocked using blocking buffer (5% sheep serum and 2% bovine serum 

albumin in PBS containing 0.3% Triton X-100) for 1 hour at room temperature. Sections 

were washed once with PBS and incubated in primary antibodies anti-4D2 (1:400) or anti-

ZPR-1 (1:500) (monoclonal from ZIRC) in PBS with 0.1% Triton X-100 at 4⁰C overnight. 

Sections were then washed twice with PBS and incubated with secondary antibody (Alexa 

fluor 488 anti-mouse (1:500), Molecular Probes) for 2 hours at room temperature. Finally, 

sections were washed three times with PBS and nuclei stained and mounted with DAPI (1.5 

µg/ml) mounting medium (Vectashield Limited) and imaged using Ziess LSM 510 confocal 

microscopy. 

 

2.7 Data analysis 

Data from each experiment were compared using an ANOVA. The level of significance was 

set at p<0.005. All data were presented as mean ± standard error of the mean (SEM).  
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3. Results 

3.1. The influence of level of ambient illumination on zebrafish swimming behaviour 

Eighteen 8-month-old zebrafish were tested under uniform white illumination. Six fish were 

tested in each of three brightness conditions (10, 150 and 350 lux). They were placed 

individually in each compartment (right or left alternately) at the beginning of each trial. 

Since the ambient illumination of the two compartments was the same, all indices were 

calculated for the zebrafish behaviour across the entire tank rather than for the individual 

compartments.  In the low brightness environment (10 lux) mean velocity was 25mm/s; in 

both of the brighter environments (150 and 350 lux) mean velocity increased to 50mm/s (Fig. 

3A-C). Compared to both the 10 lux and 150 lux conditions, TH was significantly higher 

under 350 lux illumination (Fig. 3D). However, given that VD under 150 lux had two peaks, 

5 and 50mm/s (Fig. 3A-C), a distribution indicative of the burst-and-coast mode typical of 

adult zebrafish (Videler & Weihs, 1982; Muller et al., 2000), an illumination level of 150 lux 

was used for subsequent parts of this study. 

 

3.2. The influence of colour of uniform ambient illumination on the swimming behaviour of 

untreated and acrylamide-treated zebrafish 

The swimming behaviour of 8-month-old untreated (n = 18) and acrylamide-treated zebrafish 

(n = 12) was tested under uniform coloured ambient illumination. In each condition (white, 

red and blue) the ambient colour of the two compartments was identical, as was the 

brightness (150 lux in all instances). As can be seen from the data in Fig. 4A-C, VD changed 

quite markedly under different ambient colour illumination and between untreated and treated 

fish. With the white illumination, the velocity distribution of untreated zebrafish had two 

peaks (5 and 50 mm/s); under all other conditions (untreated fish in red and blue uniform 

lighting; treated fish in all conditions) the distribution had a single peak. The mean velocity in 
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each of the colour environments was significantly reduced following acrylamide exposure 

(Fig. 4A’-C’). Apart from this reduction in swimming speed, all fish treated with acrylamide 

showed no other abnormalities (such as freezing or zig-zagging) in their motor behaviour.  

 

3.3. Colour preference of untreated and acrylamide-treated zebrafish in different colour filter 

pair environments 

The colour preference of untreated and acrylamide-treated zebrafish was tested using three 

paired combinations of colour-illuminated environments: blue-red, blue-white and red-white. 

In every case the brightness of the ambient colour was 150 lux. The COR results for 

untreated zebrafish (Fig. 5A-C) indicate a marked colour preference: the fish preferred blue 

to red, blue to white, and white to red. In other words, the order of preferred colour was blue, 

white and red. The COR results for 2.0mM acrylamide-treated zebrafish showed these fish 

remained in the compartment in which they were first placed and did not move to a 

compartment for which control fish had demonstrated a preference (Fig. 5A-C). 

 

3.4. Acrylamide treatment causes retinal damage in zebrafish 

To investigate the toxic effects of acrylamide on zebrafish retina, both histological and histo-

immunostaining assays were carried out. Haematoxylin and eosin staining showed rod outer 

segments had almost disappeared in adult fish exposed for 36 hrs to 2mM acrylamide. The 

number of rod nuclei was markedly reduced. The cones in the untreated retina were well 

aligned, while cones in the treated retina were disorganized. The total thickness of the 

photoreceptor layer was significantly decreased (Fig. 6A). Immunostaining with anti-4D2 

antibody (labelling rod outer segments) revealed significantly shortened outer segments of 

rod cells (Fig. 6B). Immunostaining for arrestin 3a using anti-ZPR1 (labelling red and green 

double cones) showed the double cones were still present but the length of these cones was 
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markedly reduced (Fig. 6C). These histological and histochemical analyses indicated that 

retinal structure was affected in the acrylamide-treated fish, but does not reveal the relation 

between the extent of retinal damage and the associated visual loss. Our colour-preference-

based behavioural technique allows the possibility of correlating structural changes with 

functional changes. 

 

4. Discussion 

The zebrafish has become an increasingly important model for the investigation of the 

genetic bases of degenerative diseases and the effects of environmental chemical factors. 

However, in order that genetic or environmental effects can be clearly elucidated it is 

necessary to establish a comprehensive description of the organism’s normal behavioural 

repertoire. With regard to behaviours mediated by visual experience, determining typical 

zebrafish preferences for different levels of illumination, different colours and different 

patterned environments is an essential prerequisite for investigating functional changes in the 

zebrafish visual system. The methodology presented here utilised a colour preference method 

to characterise the vision of living zebrafish. Self-developed software allowing the analysis of 

locomotion was used to generate quantifiable indices of swimming behaviour influenced by 

the colour of the environment. Using this method, we detected changes in behavioural 

phenotypes under different test conditions and in fish treated with acrylamide, a substance 

with known neurotoxic effects. The experimental set-up allowed the zebrafish access to two 

linked compartments, each of which was illuminated independently by white, red or blue 

light; the zebrafish chose to spend the majority of its time in the “blue” compartment when 

the neighbouring compartment was “red” or “white”, and the majority of its time in the 

“white” compartment when the neighbouring chamber was “red”. More concisely, the order 

of zebrafish colour preference was blue, white and red. This is in keeping with the findings of 
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Li et al. (2014) who used a place preference tank identical to that used in the present study 

(although they produced differently coloured compartments by placing coloured paper on the 

floor of the separate chambers): they reported that the control zebrafish spent most time in 

blue and green compartments and least time in the red compartment. Similarly, Barba-

Escobedo and Gould (2012) found that zebrafish were more likely to enter a blue rather than 

orange box (as assessed by initial preference) while Bault et al. (2015) found that zebrafish  

preferred colours of shorter wavelength. These and the current results differ from the findings 

reported by Avdesh et al. (2012) who used both a place preference procedure similar to that 

used in the current study and a T-maze procedure. The results from both procedures indicated 

that, of all colours used, red was most preferred while blue was least preferred. It is possible 

that the apparent disparity with the present results is due to the different methods used: in the 

place preference procedure used by Avdesh et al. (2012) the floor of the adjacent 

compartments was covered with coloured gravel that was illuminated by an unspecified light 

source, the characteristics of which may have influenced the zebrafish. Furthermore, with 

both procedures the various test areas were distinguished not only by differences in colour 

but differences in reflectance. 

       Our method not only allows objective recording and analysis of normal behavioural 

phenotypes but also assessment of behavioural changes resulting from environmental factors. 

Acrylamide is a neurotoxic agent known to cause retinal dysfunction and axonopathy in rats, 

cows and primates (El-Sayyad et al., 2011; Godin et al., 2000; Lynch et al., 1989; Wild & 

Kulikowski, 1984; Merigan et al., 1982). In the current study, exposure to acrylamide 

produced measurable changes in zebrafish behaviour: following acute treatment with 2.0mM 

acrylamide, zebrafish no longer exhibited the colour preferences that had been shown by the 

untreated fish. While it is tempting to interpret these behavioural changes as a consequence of 

the structural changes in the zebrafish retina produced by acrylamide exposure (i.e. the cone 
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cell disorganisation revealed by histological analysis), it is of course possible that the 

neurotoxic effects might have caused direct damage to the zebrafish motor circuitry. Li et al. 

(2016) observed a significant reduction in aspects of locomotor behaviour in the nematode 

Caenorhabditis elegans following exposure to acrylamide. However, the fact that in the 

current study the zebrafish exposed to acrylamide were still capable of locomotion, albeit at 

velocities that were reduced relative to those of the control group (Fig. 5), does suggest that 

the observed behavioural changes were unlikely to be due to motor deficits alone (although 

further work is required to ascertain if any sensory deficits are colour specific or merely due 

to changes in acuity). 

     Although the current paper describes the effects of only one particular chemical on 

zebrafish behaviour, the technique we have developed and the aspects of visual-preference 

behaviour we have defined offer a simple and straightforward method of assessing the effects 

of any toxicant, including pharmaceutical contaminants. In addition, while the majority of 

previous studies have focussed on pre-natal and early post-natal exposure (Pamanji et al., 

2015; Sun et al., 2014), our technique allows evaluation of neurotoxic effects on the vision-

mediated behaviour of adult zebrafish. Furthermore, it offers a platform for investigating a 

wide spectrum of neurodegenerative disorders including, among many others, Huntington’s 

Disease, Alzheimer’s Disease and amyotrophic lateral sclerosis, all of which have been 

modelled in zebrafish (Kabashi et al., 2011), but also appraising possible genetic or chemical 

therapies that could be used in the treatment of these conditions and so providing a platform 

for preclinical drug development. More specifically, the technique’s utility in evaluating 

functionality of the zebrafish visual system allows correlation of visual-related behavioural 

changes with the structural and functional changes revealed by other investigative approaches 

including electrophysiological and immunohistochemical methods. 
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Legends 

Figure 1 Schematic representation of the tank and the setup used for behavioural analysis. 

The tank was divided into two connected compartments of equal size, separated by an 

opaque, perforated wall. Illumination came from an LED panel placed underneath the tank. 

Coloured filters could be placed between the underside of the tank and LED panel. A shade 

was placed around the LED light panel to block any extraneous light. The LED panel light 

was powered by an adjustable DC supply. A digital video camera connected to a laptop was 

placed above the tank to record the swimming behaviour of the fish.  

 

Figure 2 Locomotion and trajectory of adult zebrafish in red-blue tank compartments. (a) A 

sequence of clips from the captured video. Time flows from left to right, top to bottom. Clips 

in second row from column ten to fifteen shows the movement of zebrafish from the red to 

the blue compartments. (b) Representative trajectory of zebrafish movement / swimming 

pattern of zebrafish in red compartment and blue compartment; the darker sections of the red 

and blue lines correspond to the period shown in (a).  

 

Figure 3 Velocity distributions (VD) of 8-month-old zebrafish under illumination of 10 lux 

(A), 150 lux (B) and 350 lux (C). Mean Through Holes Count per Thousand Seconds (TH) 

under different levels of illumination (D). Error bars represent the standard error of the mean. 

TH was significantly higher (**) under 350 lux compared both to 10 and 150 lux (p <0 .001). 

 

Figure 4 Velocity distributions (VD) of 8-month-old untreated and 2mM acrylamide (ACR) 

treated zebrafish under uniform ambient colour illumination. (A) VD in uniform white 

illumination; (B) VD in uniform blue illumination; (C) VD in uniform red illumination, 

showing the distribution of untreated and 2mM ACR treated fish. In all cases the brightness 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

20 
 

was 150 lux.  A’, B’ and C’ shows the mean velocities of untreated and 2mM ACR treated 

fish. Error bars represent the standard error of the mean.  Velocity of the 2mM ACR treated 

fish in white, red and blue light illumination was significantly reduced compared to the 

untreated fish (p < 0.0001).  

 

Figure 5 Compartment occupancy ratio (COR) for 8-month-old untreated and 2mM 

acrylamide (ACR) treated zebrafish in different ambient 150 lux colour pair combinations: 

(A) red-blue (R-B); (B) white-red (W-R); (C) white-blue (W-B). *represents the starting 

compartment of the zebrafish. Error bars represent the standard error of the mean. Significant 

differences (p < 0.0001) are represented by ****. 

 

Figure 6 Haematoxylin and Eosin (H&E) staining and immunostaining of retinal sections of 

untreated and 2mM acrylamide (ACR) treated zebrafish. (A) H&E stained retinal sections 

shows the affected rod outer segments (ROS) of ACR-treated zebrafish. (A’) Thickness of the 

photoreceptor layer relative to the whole retina (expressed as %). ACR treated zebrafish 

exhibited significantly shorter photoreceptor layer (***, p=0.0005). Error bars represent the 

standard error of the mean. (B) Immunostaining the retinal sections with   anti-4D2 antibody 

shows the localisation of rhodopsin in the ROS. Prominent and uniform rhodopsin 

localisation was observed in the ROS of the untreated zebrafish retinal sections, but abnormal 

localisation and pattern was observed in the retinal sections of ACR treated zebrafish. Nuclei 

of ONL, INL and GCL were labelled by DAPI staining. (B’) Thickness of rod outer segments 

(ROS) relative to the whole retina (expressed as %). ACR treated zebrafish had shorter ROS 

when compared untreated controls (**, p=0.0014). Error bars represent the standard error of 

the mean. (C) Anti-ZPR1 staining shows the localisation of arrestin 3a in the red and green 

cone photoreceptors. ZPR1 immunostaining shows shorter / abnormal double cones in 
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the ACR treated zebrafish. Nuclei of ONL, INL and GCL were labelled by DAPI staining. 

(C’) Thickness of double-cone layer relative to the whole retina (expressed as %). Double 

cones were significantly shorter than that of untreated controls (****, p<0.0.0001). Error bars 

represent the standard error of the mean. RPE, retinal pigment epithelium cells; ROS, rod 

outer segments; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.  
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Fig. 3 
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Fig. 4 
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Fig. 5a 
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Fig. 5b 
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Fig. 5c 
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Fig. 6 




